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Abstract-Distributed applications in business, 
engineering, and management are evolving rapidly via the 
concept of “web services” delivered over the Internet or a 
business inmet.  A vision is emerging of a fbture 
“connected economy”, in which businesses are able to 
snaintain and leverage success by responding rapidly to 
changes in demand for customer services. Space 
applications, however, face a different set of constraints, 
some of them much harder to manage. However, we 
believe that the concept of shared services is equally 
valuable in space, and we believe similar adaptability is 
feasible for space applications. The key to this is building 
middleware layers on top of standards-based 
communication, thus providing adaptability (in the 
middleware functionality) without violating 
communication standards. The result is that participating 
spacecraft can more easily produce or consume diverse 
kinds of information and services, such as navigation, 
weather, terrain, and remote computational capability. As 
more infrastructure services are deployed and more craft 
co-operate, the environment becomes progressively richer, 
yet participation can be made extremely simple (e.g., for 
low-cost “sensor web” micro-units). Our approach 
improves the transparency of information, allowing 
missions to leverage each others’ resources/capabilities 
and hence participate in an evolving “exploration web” 
with significantly more capability for efficient, automated, 
and even autonomous remote exploration. In such an 
“exploration web”, rovers, landers, and orbiters would be 
able to collaboratively utilize all assets more effectively 
and robustly, potentially providing much greater science 
return with lower operations cost and risk. Further in the 
future, we envision being able to build or modify 
applications robustly “on the fly” when the software 
components and data sources may be in different 
locations, languages, formats, etc. This extends the 
usefidness of space assets by enabling them to benefit 
fkom the evolving technology cycle. 
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1. INTRODUCTION 
JPL is developing an Interplanetary Network (IPN) in 
order to extend the reach and benefit of capabilities that 
we have come to use routinely in the terrestrial Internet 
[1,2,3]. The vision is grand but clear - spacecraft as 
“nodes on the Internet”, web-accessible as distributed 
resources, albeit ones with certain differences from those 
on Earth or in near space. This paper starts ti-om the 
assumption that a) t h i s  is a good future goal; and b) many 
of the required technologies are already in use today on 
the ground. We thus address an approach toward 
leveraging those technologies for use in space, namely 
space middleware services. In this context, middleware is 
viewed as software involved in connecting separate 
application pieces (components), but excluding that 
involved in the communication connection itself. Indeed, 
a primary goal of such middleware is to provide 
distributed capability that hides the vagaries of that 
communication. The middleware can thus be viewed as 
residing between application components (layered 
“above”) and communication components (layered 
“below”), as shown in Figure 1. 

The goal of space middleware is to simplify cooperation 
between spacecraft over many missions. It is less obvious 
why this would be of benefit for an individual isolated 
mission, but it becomes more obvious as more craft are 
involved. For example, at this date there are 5 missions 
about to launch for Mars over the next few months, and 
others are already operating in Mars orbit. Apart from this 
kind of opportunity, there are also future plans to fly 
cooperative spacecraft, even some in tight formation. It 
may thus be a good time to consider the potential benefits 
of space middleware in the IPN context. 
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Assuming there are other spacecraft reachable in the IPN, 
space middleware can assist each to extend its own 
capability by leveraging the resources of others (e&, 
remote storage, computation, or connectivity). Resource 
sharing is not a new concept, but has not been well 
developed in this context. Middleware-enabled sharing 
implies simplified access (e.g., via standard API’s) built 
upon persistent capability (services) designed to deal with 
fundamental limitations imposed by the constraints of 
space operations. Such constraints include: episodic 
connectivity; extreme power limitation; low-bandwidth 
and long-latency links; need for unattended operation. 

A simple example of such a service accessed through a 
standard interface is the CCSDS File Delivery Protocol 
(CFDP), which enables efficient file transfer over such 
space links, and conceptually replaces the standard 
Intemet File Transfer Protocol (FTP). Viewed from the 
perspective of enabling middleware, CFDP hides the 
constraints of the space link by appropriate use of 
buffering, accounting, and retransmission, while 
guaranteeing complete and ordered delivery of data in file 
units (as opposed to frames or a bit stream). More 
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designed to succeed when standard Intemet protocols are 
inadequate because one or more of their design 
assumptions (like continuous connectivity) are violated. 

Some potential benefits of a robust space-based 
middleware approach are: 

a) simplified space applications; 
b) increased automation; 
c) reduced cost; 
d) increased reliability and robustness; 
e) ability to evolve capability with little or no 

modification of the applications. 

A major issue is to define what persistent capabilities 
would provide most benefit to most space applications at 
the lowest cost, and then to develop and deploy them in 
the optimal order. Rather than attempting to reach a 
broad consensus on this before starting down this path, 
our approach is more pragmatic - namely, to quickly 
demonstrate some initial simulated capability to otbtain 
feedback and perhaps to gain support for extending it 
progressively. We have so far addressed two example 
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Figure 1 : Layered View of Space Middleware 

generally, it can be viewed as an internet “service” space applications. The first application addresses the 
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common difficulty of intermittent or pass-oriented 
communications, i.e., the desire to utilize more connection 
paths (even unknown ones) in a seamless way. The 
second addresses the fact that sensor bandwidth can 
significantly exceed downlink bandwidth. The reader can 
judge whether the demonstrated approach achieves the 
general benefits desired, particularly in simplifying the 
applications. More importantly, it needs to be decided 
when the service approach can provide sufficient return 
on investment. Some lessons learned ffom the evolution 
of the Intemet may be directly relevant: 

The Intemet did not evolve primarily by prior 
coordinated design but by increasing usage and 
incremental (experimental) extension - successes 
evolved new standards; 
The evolution of today’s wireless web is dealing with 
many issues similar to those mentioned above for 
space (e.g., disconnectedness caused by mobility, 
extreme power limitation as in handheld devices, 
etc.); 
The hot topic of ‘’web services” promotes a view of 
distributed applications that supports the above 
middleware approach; 
Costs of participation reduce dramatically with 
widespread acceptance via standardization. 

2. ENABLING TECHNOLOGY 
We have looked at two key enabling technologies that 
support middleware for space: robust asynchronous 
messaging; and a shared object model. We assume that 
communications services are available and perhaps 
standardized (e.g., CCSDS protocols). 

Robust messaging addresses many of the limitations 
imposed by the space domain, such as disconnectedness, 
long-latency links, etc. Moreover, messagaoriented 
middleware (MOM) has a successful history in the 
evolution of publishhubscribe internet applications, as 
distinct from those built using tightly-coupled remote 
invocation. At a high level, this difference can be 
compared to that between sending email and having a 
phone conversation. The former allows the sender and 
receiver each to continue performing work independently 
of the (background) email transfer, while the latter 
requires both parties to be interacting simultaneously in 
real time (with some acknowledgment). The ubiquity and 
volume of today’s email traffic attests to its utility as a 
productivity aid in the work environment. Moreover, in 
the space domain it is often impossible to provide real- 
time interactivity . Messaging can also assist automation, 
since tasks can be linked to the content of such messages. 
As a simple example, action might be triggered only 

when the value of a certain field received in a regular 
message reaches a certain range. 

This leads to discussion of the second enabling 
technology: a shared object model can enable such 
messages to have significantly more meaning. An object 
of a particular type encapsulates specific properties and 
coded functions; if an object of this type is created by one 
application then an similar object can be created and 
manipulated on a remote platform without transferring the 
entire object (which may be quite large). Separate 
application components (e.g., on different platforms) can 
thus interact efficiently because there are standardized 
rules for each to deal with the referenced objects. An 
example of this in the space domain is that a model of a 
sensor can be Created on the ground and can contain 
functions like “take current reading” or “set calibration 
value”. While the actual sensor may be on a remote 
spacecraft, ground software can interact with the local 
model of the sensor in exactly the same way as the 
spacecraft can, provided the ground and flight software 
share the object model. More importantly, these objects 
can be coupled by messages containing only the object 
reference and the property values, thus providing an 
efficient way to structure communications. A more 
futuristic example application could embed the object in a 
virtual world accessible to ground participants without 
requiring a real-time connection. This addresses (and 
extends) the notion of interacting with spacecraft as “live” 
nodes on the internet, but also shows a way to 
si@icantly simplify interactions between spacecraft. 

3. EXAMPLE APPLICATIONS 
We have explored two prototype applications using these 
key technologies to explore the ability of messaging 
middleware either to simplify the application or to support 
new capability. These prototypes were not chosen to be 
currently realistic, but to show some of the potential utility 
of the middleware approach in constructing possible 
future scenarios with greater capability or flexibility. 
With such a controversial approach (space middleware), 
an abstract example can appear too general to be useful, 
while each specific example may appear not to be 
addressing needs relevant to a particular reader. They 
should thus be viewed as a way for us to explore potential 
benefits and pitfalls of shared space middleware. 

The fnst prototype application addresses a simulated 
scenario involving communication between a rover and 
the ground. Normally, this communication is scheduled 
for a single pass per sol, during which telemetry is 
downlinked and commands are uplinked. In that case, 
only simple point-to-point scheduled communication is 
necessary, but conversely this limits the rover to a 1-sol 
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cycle of reporting and plan updates. Our middleware 
prototype added consideration of another craft (orbiter) as 
an ad-hoc relay, thus allowing a more rapid cycle. 
However, in order to investigate the concept of a flexible 
relay, we postulated that some adaptivity would be 
required of the joint activities of the rover and orbiter. 
This adaptivity could take the form of a request by the 
rover for relay capability to Earth (fiom any possible 
responder), and a negotiation between the responder for 
changes to both their plans to accommodate the request. 

JPL has had significant experience developing a robust 
object-based messaging middleware for military 
application. Since many of the constraints of this 
application are similar to those described for space, we 
attempted to apply this middleware (SharedNet) to 
explore the above scenario. We thus created a new 
activity type in the (shared) object model and used the 
messaging middleware to transfer attributes (such as task 
type, start and end time) between existing planner 
applications assumed to be running on both rover and 
orbiter. The communications model between SharedNet 
participants is described by clients publishing messages to 
a server and registering subscriptions to particular object 
types. In the roverlorbiter example, the orbiter could host 
the server, and messages between the rover and orbiter 
would be transferred in prioritized order when connection 
between them was established (i.e., when the rover and 
orbiter plans allowed it). Subsequent plan negotiation 
results fiom each planner subscribing to plan objects fiom 
the other; these objects contain either plan update requests 
or replies. The demonstration showed that the 
publishhubscribe messaging middleware was easily 
adapted to th is  new (planning) application. 

At frrst glance, such an approach might appear to be 
“overkill” for the type of scenario described, since a 
specific relay connection could be built into both rover 
and orbiter plans by agreement between the mission 
operations teams on the ground. However, the purpose of 
this investigate was to explore features that provide a 
M e w o r k  for much greater potential capability, if the 
existence of appropriate middleware is considered. For 
example, it indicates that spacecraft communication can 
be automated (like cell-phone connectivity) to make better 
use of available communication opportunities and 
bandwidth. It also indicates how such connections can be 
efficiently utilized via a shared object model, and avoids 
the creation and implementation of a new application 
protocol for each such type of communication. Next, the 
use of a publishhubscribe paradigm allows participants to 
automatically obtain only the information they wish to 
receive when connection occurs, and show that many 
different kinds of information transfer can utilize the same 

connection (but dif€erent objects). For example, the 
messages could contain sensor readings, navigation 
information, images, etc., and could be destined for many 
kinds of users. Lastly, the subscriber may even be 
unknown to the publisher, for example an in-situ sensor 
publishes a regular measurement to a server which then 
makes them available to interested parties. 

Having outlined some of the ways such a messaging 
inf?astructure could be used, it can now be inferred that 
new capabilities can be conceived and implemented much 
more simply. For example, an automated application 
(e.g., agent) could collect information fiom a number of 
sensors (by subscription, without needing direct contact 
with any of them), and then perform a task based on 
derived information - e.g., to capture a seismological or 
weather event. The relatively simple remote automated 
messaging infrastructure thus opens the door to other 
event-driven science that might be impossible if round-trip 
connections to Earth were needed. From the ground 
viewpoint, downlink bandwidth might only be utilized 
when particular events are observed by sensors within the 
planetary network. ?his is becoming a sketch preview of 
the middleware-based “exploration web”. 

The second example application looked at the work of 
another research team at JPL (OASIS). In that 
application, images taken by a camera for navigation 
during long traverse are processed onboard to determine 
science value against criteria specified by the scientist. If 
“sufficiently interesting” results are obtained, then 
notification is sent to the ground at the next opportunity, 
perhaps resulting in the scientist requesting plan 
modification to interrupt the traverse in favor of a closer 
inspection of the “found” area of interest. Without such a 
“traverse science” application, potentially valuable science 
information could be missed, and onboard capability 
unwed. 

This kind of science application also fits quite easily into 
the above-described middleware infrastructure. First, the 
acquired images can be “published” to the onboard 
message store (thus making them immediately available to 
other applications), along with metadata such as 
acquisition time, location, etc. (as properties of the image 
object). An onboard science processing application can 
then “subscribe” to the sensor data, and returns results 
either as M e r  metadata properties of the original image, 
or as a new processed object (e.g., a feature vector that 
also contains a reference to the original source object). 
The processed vectors can then be ordered by interest 
value. The scientist (who provided the feature processing 
algorithm) then subscribes to this ordered feature set, 
perhaps requesting only those above a certain level. 
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These results will be delivered semi-automatically (via 
some path created by the distribution middleware as 
connectivity and priority allow). This is quite a different 
approach than the current one, and should be considered 
only as a stimulant to conceive interesting new 
applications that might be feasible if such middleware 
were available and reliable. 

Figure 2 shows a middleware-enabled environment 
providing capability to several example applications via 
the same few standardized middleware features (message 
transfer, local storage and query, prioritized delivery). 
More importantly, evolutions to this capability can easily 
be envisioned and simply implemented, perhaps even “on 
the fly”. For example, the scientist could request 
(subscribe to) the original image for a particular feature 

to science events. Finally, if sufficient regional storage 
provided (e.g., on an orbiting platform), information of 
value to other missions can be made available without 
ever making the round trip to Earth. For example, high- 
resolution mapping data obtained by an orbiting sensor 
could be utilized by a navigation algorithm on a rover. 
This is particularly interesting given that 4% of the 
mapping data produced by Mars Global Surveyor can be 
downlinked to Earth using current links. 

4. DISCUSSION 
Space-based middleware can help shift focus away from 
the details of point-to-point remote communication and 
towards a high-level service architecture with increased 
capability for automation and cooperation among space 
assets. A fmt step is to defme high-level data objects and 
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Figure 2: Space Middleware Environment 

vector received, or could remotely modify the onboard 
processing algorithm to consider other factors, perhaps 
including information obtained fiom other sensors which 
may not even be on the same spacecraft. Temporary local 
storage can be semi-automatically released by deleting 
objects using such criteria as time to expire or lowest 
relative importance. Many such features can be 
implemented with little or no ground communication. 
This can preserve downlink bandwidth and increase 
quality of science delivered while simultaneously 
providing more rapid (perhaps even automated) response 

a mechanism to allow efficient exchange between 
producers and consumers interested in particular attributes 
of such objects. This also helps on-board applications to 
be insulated from inessential details (including the 
vagaries of the space communication). We believe these 
many of these details are best handled once (at the s h e d  
service layer), rather than every time (at the individual 
application level). 

We distinguish the suggested space service architecture 
fiom the (required) underlying communication protocols. 
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Of course, such an architecture cannot be deployed in 
space without careful attention to its particular constraints 
(e.g., intermittent connectivity, limited resources such as 
bandwidth, power, etc.). Moreover, reliability and 
availability become paramount for services in the space 
domain, and need to be addressed much more carefilly 
than is typical for internet-based services. For example, 
automated transparent service redundancy would be an 
important goal. 

We also need to define interfaces to appropriate higher- 
level peer information services (as in the middle column 
of Figure I), and to design these services to be layered 
appropriately despite the highly resource-constrained 
environment. Our suggested approach is to follow the 
incremental development of terrestrial web services, 
which are based on encapsulated components 
communicating via Internet protocols. As observed with 
the terrestrial Internet, functionality and benefits would 
increase as more services are deployed and more 
resources (spacecrafi) co-operate. 

seen as working to assist this work, not to provide an 
alternative. It is perceived that the larger problem to be 
solved is not technological in nature, but cultural. 

This work was performed at the Jet Propulsion Laboratory 
of the California Institute of Technology under NASA 
support. Original contributions of Anthony Barrett, Thom 
McVittie, and Brad Clement are acknowledged. 
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There is significant ongoing work in areas such as IPN 
architecture, space communication standards, protocol 
development, onboard autonomy, distributed science. 
This description of space middleware is intended to be 
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